Abstract

The strong calcium-binding site of α-lactalbumin comprises the carboxylate side chains of aspartic acid 82, 87, and 88 and the carbonyl oxygens of residues 79 and 84. A single methionine residue was selectively modified by controlled CNBr cleavage to yield homoserine at position 90. The CNBr-cleaved α-lactalbumin lost the ability to bind calcium strongly as monitored by intrinsic fluorescence, electrophoretic mobility, atomic absorption, and x-ray fluorescence. Remarkably, the modified protein was still competent in lactose biosynthesis, although activity was reduced to 1/40th that of the native form of the protein. Although the strong calcium-binding site was destroyed as a result of the cleavage of the calcium-binding loop, a secondary calcium site was retained that directly affects a rate enhancement of lactose biosynthesis when saturated, resulting in approximately a two- to threefold increase in rate at 1mM CaCl2 with an activation equilibrium constant of 350±40 μM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call