Abstract

The unique functions of intrinsically disordered proteins (IDPs) depend on their dynamic protean structure that often eludes analysis. High-speed atomic force microscopy (HS-AFM) can conduct this difficult analysis by directly visualizing individual IDP molecules in dynamic motion at sub-molecular resolution. After brief descriptions of the microscopy technique, this review first shows that the intermittent tip-sample contact does not alter the dynamic structure of IDPs and then describes how the number of amino acids contained in a fully disordered region can be estimated from its HS-AFM images. Next, the functional relevance of a dumbbell-like structure that has often been observed on IDPs is discussed. Finally, the dynamic structural information of two measles virus IDPs acquired from their HS-AFM and NMR analyses is described together with its functional implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call