Abstract
Ectopic adrenocorticotropic hormone (ACTH)-secreting tumors are commonly small, yet they often lead to fulminant forms of Cushing syndrome. High-resolution functional imaging modalities, such as [Ga]-DOTATATE, have been recently introduced in clinical practice for the identification of neuroendocrine tumors. In this review, we focus on the performance of [Ga]-DOTATATE as a tool for localizing primary and metastatic sources of ectopic Cushing syndrome (ECS). Prompt surgical removal of ectopic ACTH-secreting tumors is the mainstay of therapy in patients with ECS. Detecting such tumors with conventional cross-sectional imaging is often unsuccessful, owing to their small size. [Ga]-DOTATATE has been approved in 2016 by the Federal Drug Administration for imaging well differentiated neuroendocrine tumors. Data regarding the performance of [Ga]-DOTATATE for detecting ectopic ACTH-secreting tumors remain limited, in part owing to the recent introduction of this imaging modality in clinical practice, and in part because of the low prevalence of ECS. Nevertheless, [Ga]-DOTATATE has been reported to be useful in identifying primary and metastatic ectopic ACTH-secreting lesions that were not apparent on other imaging studies, impacting the clinical care of many patients with ECS. [Ga]-DOTATATE-based imaging, which targets the somatostatin receptors abundantly expressed in neuroendocrine tumors, has generally high, although variable resolution in detecting the source(s) of ECS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Current opinion in endocrinology, diabetes, and obesity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.