Abstract

Directional cell-to-cell movement of auxin is mediated by asymmetrically localized PIN-FORMED (PIN) auxin efflux transporters. The polar localization of PINs has been reported to be modulated by phosphorylation. In this study, the function of the phosphorylation sites of the PIN3 central hydrophilic loop (HL) was characterized. The phosphorylation sites were located in two conserved neighboring motifs, RKSNASRRSF(/L) and TPRPSNL, where the former played a more decisive role than the latter. Mutations of these phosphorylatable residues disrupted in planta phosphorylation of PIN3 and its subcellular trafficking, and caused defects in PIN3-mediated biological processes such as auxin efflux activity, auxin maxima formation, root growth, and root gravitropism. Because the defective intracellular trafficking behaviors of phospho-mutated PIN3 varied according to cell type, phosphorylation codes in PIN3-HL are likely to operate in a cell-type-specific manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.