Abstract
Glutathione (GSH) fulfills a variety of metabolic functions, participates in oxidative stress response, and defends against toxic actions of heavy metals and xenobiotics. In this study, GSH was detected in Rhodosporidium diobovatum by high-performance liquid chromatography (HPLC). Then, two novel enzymes from R. diobovatum were characterized that convert glutamate, cysteine, and glycine into GSH. Based on reverse transcription PCR, we obtained the glutathione synthetase gene (GSH2), 1866bp, coding for a 56.6-kDa protein, and the glutamate cysteine ligase gene (GSH1), 2469bp, coding for a 90.5-kDa protein. The role of GSH1 and GSH2 for the biosynthesis of GSH in the marine yeast R. diobovatum was determined by deletions using the CRISPR-Cas9 nuclease system and enzymatic activity. These results also showed that GSH1 and GSH2 were involved in the production of GSH and are thus being potentially useful to engineer GSH pathways. Alternatively, pET-GSH constructed using vitro recombination could be used to detect the function of genes related to GSH biosynthesis. Finally, the fermentation parameters determined in the present study provide a reference for industrial GSH production in R. diobovatum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.