Abstract

Dryopteris fragrans (L.) Schott has anti-inflammatory and antioxidant properties, and terpenoids are important components of its active constituents. The methyl-D-erythritol 4-phosphate (MEP) pathway is one of the major pathways for the synthesis of terpene precursors in plants, and 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is the first rate-limiting enzyme in this pathway. DXS has been shown to be associated with increased stress tolerance in plants. In this experiment, two DXS genes were extracted from the D. fragrans transcriptome and named DfDXS1 and DfDXS2. Based on phylogenetic tree and conserved motif analyses, DXS was shown to be highly conserved evolutionarily and its localization to chloroplasts was determined by subcellular localization. Prokaryotic expression results showed that the number and growth status of recombinant colonies were better than the control under 400 mM NaCl salt stress and 800 mM mannitol-simulated drought stress. In addition, the DfDXS1 and DfDXS2 transgenic tobacco plants showed improved resistance to drought and salt stress. DfDXS1 and DfDXS2 responded strongly to methyl jasmonate (MeJA) and PEG-mimicked drought stress following exogenous hormone and abiotic stress treatments of D. fragrans. The transcriptional active sites were investigated by dual luciferase and GUS staining assays, and the results showed that the STRE element (AGGGG), the ABRE element (ACGTGGC), and the MYC element (CATTTG) were the important transcriptional active sites in the promoters of the two DXS genes, which were closely associated with hormone response and abiotic stress. These results suggest that the DfDXS gene of D. fragrans plays an important role in hormone signaling and response to stress. This study provides a reference for analyzing the molecular mechanisms of stress tolerance in D. fragrans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.