Abstract
Low molecular weight organic acids (LMWOA) are commonly present in natural water and play a pivotal role in the reduction of Cr(VI). In frozen solutions, the efficiency of Cr(VI) reduction is significantly enhanced due to the freezing concentration effect. However, this facilitation is found to be contingent upon the functional groups of LMWOA in this study. To be specific, LMWOA and Cr(VI) can form five-membered ring complexes, which greatly enhance electron transfer efficiency through Ligand-to-Metal Charge Transfer (LMCT). DFT calculations indicate that oxygen-containing groups located on carbon atoms at α positions play a crucial role in forming these complexes, ultimately determining the kinetics of Cr(VI) reduction. Moreover, freezing not only increases proton concentrations but also reduces free water molecule content in the liquid-like layer (LLL), thereby affecting LMWOA species through regulation of protonation and hydrolysis, and subsequently impacting reaction mechanisms. The stoichiometric ratios between LMWOA and Cr(VI) exceed theoretical values due to complexation with Cr(III). The reduction of Cr(VI) by LMWOA in frozen solutions is inhibited by soil solution, while the degree of inhibition varies among different types of LMWOA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.