Abstract

Chemical transformations that introduce, remove or manipulate functional groups are ubiquitous in synthetic chemistry1. Unlike conventional functional-group interconversion reactions that swap one functionality for another, transformations that alter solely the location of functional groups are far less explored. Here, by photocatalytic, reversible C-H sampling, we report a functional-group translocation reaction of cyano (CN) groups in common nitriles, allowing for the direct positional exchange between a CN group and an unactivated C-H bond. The reaction shows high fidelity for 1,4-CN translocation, frequently contrary to inherent site selectivity in conventional C-H functionalizations. We also report the direct transannular CN translocation of cyclic systems, providing access to valuable structures that are non-trivial to obtain by other methods. Making use of the synthetic versatility of CN and a key CN translocation step, we showcase concise syntheses of building blocks of bioactive molecules. Furthermore, the combination of C-H cyanation and CN translocation allows access to unconventional C-H derivatives. Overall, the reported reaction represents a way to achieve site-selective C-H transformation reactions without requiring a site-selective C-H cleavage step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call