Abstract

Developing economical and efficient catalyst for hydrogen generation from ammonia borane (AB) hydrolysis is still a huge challenge. As an alternative strategy, the functional group regulation of metal nanoparticles (NPs)-based catalysts is believed to be capable of improving the catalytic activity. Herein, a series of Ni/Ti3C2Tx-Y (Tx = F, -OH; Y denotes etching time (d)) catalysts are synthesized and show remarkably enhanced catalytic activity on the hydrolysis of AB in contrast to the corresponding without regulating. The optimized Ni/Ti3C2Tx-4 with a turnover frequency (TOF) value of 161.0 min-1 exhibits the highest catalytic activity among the non-noble monometallic-based catalyst. Experimental results and theory calculations demonstrate that the excellent catalytic activity benefits from the bimolecular activation channels formed by Ni NPs and Ti3C2Tx-Y. H2O and AB molecules are activated simultaneously in the bimolecular activation tunnel. Bimolecular activation reduces the activation energy of AB hydrolysis, and hydrogen generation rate is promoted. This article provides a new approach to design effective catalysts and further supports the bimolecular activation model for the hydrolysis of AB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.