Abstract

Functional groups modified metal-organic frameworks (MOFs) was synthesized via a pre-tailor method and served as an adsorbent for perfluorooctanoic acid (PFOA) removal. The material was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and N2 sorption-desorption. Monte Carlo simulation and molecular dynamics are derived to predict the possible molecular packing and adsorption mechanism. The Hirshfeld surface with reduced density gradient analysis demonstrates that PFOA is adsorbed on MOF-X mainly affected by van der Waals interactions and steric effects. Adsorption kinetics and isotherms were investigated on the basis of a static experiment. The pseudo-second-order kinetic model and Langmuir isotherm were fitted well to characterize adsorption process. Hereinto, amino-modified MOFs reached the highest adsorption efficiency and the maximum capacity was 185.6 mg/g. Combing the experimental data with theoretical simulation, results indicated that functional group modification is an effective approach to alter the crystal structure and then affect the adsorptive properties of MOFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.