Abstract

Exploring new types of photochemical reactions is of great interest in the field of synthetic chemistry. Although excited-state hydrogen detachment (ESHD) represents a promising prospective template for additive-free photochemical reactions, applications of ESHD in a synthetic context remains scarce. Herein, we demonstrate the expansion of this photochemical reaction toward oligomerization, disulfidation, and regioselective C(sp2)-H carboxylation of aromatic alcohols, thiols, and amines. In the absence of any radical initiators in tetrahydrofuran upon irradiation with UV light (λ = 280 or 300 nm) under an atmosphere of N2 or CO2, thiols and catechol afforded disulfides and oligomers, respectively, as main products. Especially, the photochemical disulfidation proceeded highly selectively with the NMR and quantum yields of up to 69 and 0.46%, respectively. In stark contrast, the photolysis of phenylenediamines and aminophenols results in photocarboxylation in the presence of CO2 (1 atm). p-Aminophenol was quantitatively carboxylated by photolysis for 17 h with a quantum yield of 0.45%. Furthermore, the photocarboxylation of phenylenediamines and aminophenols proceeds in a highly selective fashion on the aromatic C(sp2)-H bond next to a functional group, which is directed by the site-selective ESHD of the functional groups for the formation of aminyl and hydroxyl radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.