Abstract

We study functional graphs generated by several quadratic polynomials, acting simultaneously on a finite field of odd characteristic. We obtain several results about the number of leaves in such graphs. In particular, in the case of graphs generated by three polynomials, we relate the distribution of leaves to the Sato-Tate distribution of Frobenius traces of elliptic curves. We also present extensive numerical results which we hope may shed some light on the distribution of leaves for larger families of polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.