Abstract

Insufficient bone regeneration is a complex problem affecting millions, and treatment would benefit from a complex material that recapitulates the properties of native bone. No current tissue-engineered scaffold can capture all of the properties of healthy bone. Graphene, graphene oxide (GO), and functional graphenic materials (FGMs) have a variety of interesting properties that make them promising foundations on which to craft sophisticated, biomimetic, osteoinductive, synthetic scaffolds for bone regeneration. GO has shown promise in the osteoinduction of stem cells, especially when coupled with growth factors. Additionally, FGMs have tunable surface chemistry and mechanical properties, as well as periodic long-range order, making this class of materials a promising candidate for regeneration of hard tissues. Strategies for controlling and modifying the surface chemistry of graphenic materials have become increasingly sophisticated in recent years, providing access to new FGMs with distinct implications in biomaterials and medicine. In this review, we discuss promising emerging strategies for the use of graphenic materials in bone regeneration, with a focus on biomimetic and bioinstructive FGMs. The regeneration of bone is an interdisciplinary medical, scientific, and engineering challenge. While small fractures heal spontaneously into adulthood, larger injuries and deformities require surgical correction. Currently, grafts or metallic prosthetics are the standard of care, but both suffer limitations. Graphene, graphene oxide, and functional graphenic materials comprise a class of materials that can be derived from graphite (pencil lead) and offer a plethora of promising properties including long-range order, mechanical stability, and autodegradability that make them promising scaffold materials for bone regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call