Abstract

Aging of zirconia in vivo has been widely discussed as a potential cause of implant degradation over time. Hydrothermal degradation is sensitive to composition, process conditions, and microstructure leading to an emphasis on secondary phases, and grain boundary engineering for aging resistance. However, surface coatings, resultant residual stress, and associated physical constraint for phase stabilization are insufficiently explored. Herein a novel ceramic dough processing facilitated the formation of a functional gradient alumina coating (20–50 µm) below the critical thickness, on net-shaped green zirconia dental implant while preserving the fine machined threads. Residual stress (~ −0.8 GPa) after sintering improved the characteristic strength by ~ 45% with a simultaneous contribution to profound phase preservation after in vitro aging. Thus, the compositional gradient coating on green zirconia components using alumina-based slurries is a facile surface modification technique to inhibit moisture-induced aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call