Abstract

Hypertension is a leading contributor to cardiovascular diseases such as heart attack and stroke. Genetic and environmental factors contribute to the development of hypertension. Animal models have been developed to study the genetic contributions to blood pressure (BP) regulation and to identify chromosomal regions harboring candidate genes causative of differences in BP regulation (i.e., BP quantitative trait loci [QTL]). Advances in both mammalian genome projects and global gene expression analysis present opportunities to study functional genomics in these animal models. In this article, novel approaches for designing experiments and interpreting global gene expression data using the Dahl salt-sensitive hypertension rat model are presented. We describe two-step screening protocols that can be used to identify BP QTL candidate genes. Genetically determined expression differences are identified in the target organs of inbred strains of contrasting phenotype in the first screen. Expression patterns in a panel of congenic strains or expression differences stemming from gene x environment interactions are examined in the second screen. Chromosomal locations of these genes can then be examined to determine whether they map to BP QTL-containing regions. Another approach is to study the expression of genes identified from public databases to be located within BP QTL-containing congenic regions. Several candidate genes have been identified using these strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.