Abstract

BackgroundChronic renal failure is characterized by progressive renal scarring and accelerated arteriosclerotic cardiovascular disease despite what is considered to be adequate hemodialysis or peritoneal dialysis. In rodents with reduced renal mass, renal scarring has been attributed to poorly filtered, small protein-bound molecules. The best studied of these is indoxyl sulfate (IS).MethodsWe have attempted to establish whether there are uremic toxins that are not effectively removed by hemodialysis. We examined plasma from patients undergoing hemodialysis, employing global gene expression in normal human renal cortical cells incubated in pre- and post- dialysis plasma as a reporter system. Responses in cells incubated with pre- and post-dialysis uremic plasma (n = 10) were compared with responses elicited by plasma from control subjects (n = 5). The effects of adding IS to control plasma and of adding probenecid to uremic plasma were examined. Plasma concentrations of IS were measured by HPLC (high pressure liquid chromatography).ResultsGene expression in our reporter system revealed dysregulation of 1912 genes in cells incubated with pre-dialysis uremic plasma. In cells incubated in post-dialysis plasma, the expression of 537 of those genes returned to baseline but the majority of them (1375) remained dysregulated. IS concentration was markedly elevated in pre- and post-dialysis plasma. Addition of IS to control plasma simulated more than 80% of the effects of uremic plasma on gene expression; the addition of probenecid, an organic anion transport (OAT) inhibitor, to uremic plasma reversed the changes in gene expression.ConclusionThese findings provide evidence that hemodialysis fails to effectively clear one or more solutes that effect gene expression, in our reporter system, from the plasma of patients with uremia. The finding that gene dysregulation was simulated by the addition of IS to control plasma and inhibited by addition of an OAT inhibitor to uremic plasma identifies IS as a major, poorly dialyzable, uremic toxin. The signaling pathways initiated by IS and possibly other solutes not effectively removed by dialysis may participate in the pathogenesis of renal scarring and uremic vasculopathy.

Highlights

  • We examined plasma from patients undergoing hemodialysis, employing global gene expression in normal human renal cortical cells incubated in pre- and post- dialysis plasma as a reporter system

  • Plasma on gene expression; the addition of probenecid, an organic anion transport (OAT) inhibitor, to uremic plasma reversed the changes in gene expression. These findings provide evidence that hemodialysis fails to effectively clear one or more solutes that effect gene expression, in our reporter system, from the plasma of patients with uremia

  • The finding that gene dysregulation was simulated by the addition of indoxyl sulfate (IS) to control plasma and inhibited by addition of an OAT inhibitor to uremic plasma identifies IS as a major, poorly dialyzable, uremic toxin

Read more

Summary

Introduction

The dramatic improvement in uremic symptoms following hemodialysis treatment in patients with acute renal failure [1] and the demonstration that patients with chronic renal failure could be maintained by chronic hemodialysis [2], contributed greatly to the assumption that uremia was attributable to a small, water soluble substance or substances that could be removed by diffusion across a synthetic dialysis membrane. Varying the porosity of dialysis membranes, techniques of hemodialysis, dialysis time and dialysis frequency, while resulting in improved urea and creatinine removal, have resulted in only modest improvements in survival [8,9,10] These observations have led to a reevaluation of the contribution of protein-bound or “middle molecules” not effectively removed by conventional dialysis [11]. An aryl amine, has been identified as a potential uremic toxin responsible for accelerated renal scarring in the rodent remnant kidney model [16,17,18,19]. Chronic renal failure is characterized by progressive renal scarring and accelerated arteriosclerotic cardiovascular disease despite what is considered to be adequate hemodialysis or peritoneal dialysis.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.