Abstract
Abundant evidence supports the hypothesis that cancer arises from normal cells through the stepwise accumulation of genetic mutations. The study of cells obtained from patients with cancer has identified numerous molecules and pathways that fundamentally contribute to malignant transformation; however, cancer cell lines are often difficult to isolate or maintain, and the cell lines that are available for experimentation represent only a small subset of late-stage human cancers. Recent work has elucidated the role of telomerase in regulating human cell lifespan and has enabled the development of new experimental systems to study human cancer. This review highlights the recent progress in combining genetic methods and primary human cells to understand the role of specific genes and pathways in cancer pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.