Abstract

BackgroundColorectal cancer, a prevalent malignancy worldwide, poses a significant challenge due to the lack of effective prognostic tools. In this study, we aimed to develop a functional gene signature to stratify colorectal cancer patients into different groups with distinct characteristics, which will greatly facilitate disease prediction.ResultsPatients were stratified into high- and low-risk groups using a prediction model built based on the functional gene signature. This innovative approach not only predicts clinicopathological features but also reveals tumor immune microenvironment types and responses to immunotherapy. The study reveals that patients in the high-risk group exhibit poorer pathological features, including invasion depth, lymph node metastasis, and distant metastasis, as well as unfavorable survival outcomes in terms of overall survival and disease-free survival. The underlying mechanisms for these observations are attributed to upregulated tumor-related signaling pathways, increased infiltration of pro-tumor immune cells, decreased infiltration of anti-tumor immune cells, and a lower tumor mutation burden. Consequently, patients in the high-risk group exhibit a diminished response to immunotherapy. Furthermore, the high-risk group demonstrates enrichment in extracellular matrix-related functions and significant infiltration of cancer-associated fibroblasts (CAFs). Single-cell transcriptional data analysis identifies CAFs as the primary cellular type expressing hub genes, namely ACTA2, TPM2, MYL9, and TAGLN. This finding is further validated through multiple approaches, including multiplex immunohistochemistry (mIHC), polymerase chain reaction (PCR), and western blot analysis. Notably, TPM2 emerges as a potential biomarker for identifying CAFs in colorectal cancer, distinguishing them from both colorectal cancer cell lines and normal colon epithelial cell lines. Co-culture of CAFs and colorectal cancer cells revealed that CAFs could enhance the tumorigenic biofunctions of cancer cells indirectly, which could be partially inhibited by knocking down CAF original TPM2 expression.ConclusionsThis study introduces a functional gene signature that effectively and reliably predicts clinicopathological features and the tumor immune microenvironment in colorectal cancer. Moreover, the identification of TPM2 as a potential biomarker for CAFs holds promising implications for future research and clinical applications in the field of colorectal cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.