Abstract

Chemically modified graphene (CMG) materials have been extensively studied because of their unique structures, excellent properties, and potential applications in energy storage and conversion, catalysis, and environment remediation. However, the unique two-dimensional structure and amphiphilicity make CMG sheets easily restack into irregular aggregates, which greatly reduces their accessible surface area, and thereby deteriorates their performance in practical applications. To exploit their inherent properties fully, CMGs usually have to be fabricated or assembled into functional gels with desired three-dimensional (3D) interconnected porous microstructures. In this review, we summarize the recent achievements in the synthesis of CMG-based functional gels, including hydrogels, organogels, aerogels, and their composites. The mechanisms of gel formation and the applications of these functional gels will also be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.