Abstract

Platelet heterogeneity has been studied with a technique called functional fractionation which employs gentle centrifugation to yield subpopulations ("reactive" and "less-reactive" platelets) after exposure to small doses of aggregating agent. Aggregation kinetics of the different platelet populations were investigated by quenched-flow aggregometry. The larger, "reactive" platelets were more sensitive to ADP (Ka = 1.74 microM) than the smaller "less-reactive" platelets (Ka = 4.08 microM). However, their maximal rate of aggregation (Vmax, % of the platelets aggregating per sec) of 23.3 was significantly lower than the "less-reactive" platelets (Vmax = 34.7). The "reactive" platelets had a 2.2 fold higher level of cyclic AMP. Platelet glycoproteins were labeled using the neuraminidase-galactose oxidase--[H3]-NaBH4 technique. When platelets were labeled after reversible aggregation, the "reactive" platelets showed a two-fold decrease in labeling efficiency (versus control platelets). However, examination of whole cells or membrane preparations from reversibly aggregated platelets revealed no significant difference in Coomassie or PAS (Schiff) staining. These results suggest that the large, "reactive" platelets are more sensitive to ADP but are not hyperaggregable in a kinetic sense. Reversible aggregation may cause a re-orientation of membrane glycoproteins that is apparently not characterized by a major loss of glycoprotein material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.