Abstract

Sensors operating in multiple domains, such as optical and electrochemical, offer properties making biosensing more effective than those working in a single domain. To combine such domains in one sensing device, materials offering a certain set of properties are required. Fluorine-doped tin oxide (FTO) thin film is discussed in this work as functional optically for guiding lossy modes and simultaneously electrochemically, i.e. as a conductive material for a working electrode. Performance of the FTO-based optical fiber lossy-mode resonance (LMR) sensor in both optical and electrochemical domains is analyzed. Additionally, to enhance applicability of the sensor, its probe-like reflection configuration has been developed. It is found that FTO may be considered as a promising alternative for other thin conductive oxides (TCO), such as indium tin oxide (ITO) that has been often applied up to date in various dual-domain sensing concepts. In the optical domain, the sensitivity of the FTO-LMR sensor to external refractive index (RI) has reached 450 nm/RIU in the RI range of 1.33–1.40 RIU. In the electrochemical domain, in turn, the response for FTO electrode in 1,1′-Ferrocenedimethanol solution has been reached with RedOx current low peak-to-peak separation. In contrast to the ITO-LMR sensors, the FTO-LMR counterparts exhibit a significant influence of applied potential on LMR wavelength shift in a wide potential range. It is shown using streptavidin as a target biomaterial that label-free biosensing applications of the FTO-LMR approach are possible. The dual-domain functionality allows for cross-verification between readouts received in both the domains, as well as enhancement of optical sensitivity when cross-domain interactions are applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call