Abstract
We propose a new method for the analysis of functional magnetic resonance imaging (fMRI) which is called functional feature subspace mapping (FFSM). We mainly focused on the experimental design with periodic stimuli which can be described by a number of Fourier coefficients in the spectral domain. Then the subspace is obtained through the dimension reduction technique. Finally, the presence of activated time series is identified by the clustering method. Experiments with simulated data and the real human experiments are conducted to demonstrate that the algorithm we proposed is feasible. Although we focus on analyzing periodic fMRI data, the approach could be extended to analyze non-periodic fMRI data (event-related fMRI) by replacing the spectral analysis with a wavelet analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.