Abstract

We propose a functional version of extended redundancy analysis that examines directional relationships among several sets of multivariate variables. As in extended redundancy analysis, the proposed method posits that a weighed composite of each set of exogenous variables influences a set of endogenous variables. It further considers endogenous and/or exogenous variables functional, varying over time, space, or other continua. Computationally, the method reduces to minimizing a penalized least-squares criterion through the adoption of a basis function expansion approach to approximating functions. We develop an alternating regularized least-squares algorithm to minimize this criterion. We apply the proposed method to real datasets to illustrate the empirical feasibility of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.