Abstract

T-cell immunoglobulin mucin-3 (Tim-3), an inhibitory immune checkpoint receptor, is highly expressed on acute myeloid leukemia cells and its ligand galectin-9 is reported to drive leukemic progression by binding with Tim-3. However, it remains unclear whether the Tim-3–galectin-9 pathway is associated with the pathophysiology of myelodysplastic syndromes (MDS). Thus, we investigated the expression and function of Tim-3 and the clinical impact of its ligand galectin-9 in MDS. Tim-3 expression levels on MDS blasts by CD45/side-scatter or CD34/CD45 gating were increased as MDS progressed to the advanced stage. Tim-3 expression in the MDS blasts was upregulated in the presence of the cell culture supernatant of human stromal cells or the MDS-related cytokine transforming growth factor-β1. The proliferation of Tim-3+ MDS blasts was inhibited by the blockade of anti-Tim-3 antibody. Furthermore, plasma levels of galectin-9 were elevated as MDS progressed to the advanced stage in 70 MDS/acute leukemia transformed from MDS patients and was a prognostic factor in 40 MDS patients. Our data demonstrated that the Tim-3-galectin-9 pathway is associated with the pathogenesis and disease progression of MDS. These findings provide new insight into potential immunotherapy targeting the galectin-9–Tim-3 pathway in MDS.

Highlights

  • Myelodysplastic syndromes (MDS) are clonal hematologic stem cell disorders characterized by cytopenia and a high risk of progression to acute myeloid leukemia (AML)

  • Obvious expression of T-cell immunoglobulin mucin-3 (Tim-3) was detected on blasts by both CD45/side-scatter and CD34/CD45 gating methods and on monocytes in bone marrow (BM) cells (Figure 1A shows the results in an AL-myelodysplastic syndromes (MDS) patient)

  • The number of patients was limited, high Tim-3 expression was detected in Acute leukemia transformed from MDS (AL-MDS) patients

Read more

Summary

Introduction

Myelodysplastic syndromes (MDS) are clonal hematologic stem cell disorders characterized by cytopenia and a high risk of progression to acute myeloid leukemia (AML). Acute leukemia transformed from MDS (AL-MDS) occurs in 10–40% of MDS patients, and those patients had poor prognosis with a median survival time of 4.7 months [1]. It is crucial to elucidate the mechanism of disease progression and leukemic transformation in MDS patients. In progression to advanced disease, clonal blasts gain aggressive behavior with more proliferative potential and fewer apoptotic cells compared with those in patients with low-grade disease. Some gene mutations tend to be newly acquired [2]. The suppression of antitumor immunity such as PD-L1 upregulation on MDS blasts may be associated with AML progression [3, 4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call