Abstract
We have expressed the pore-forming subunits (Kir 6.1 and Kir 6.2) of the mammalian ATP-sensitive potassium channel in a potassium-transport deficient yeast strain (trk1 trk2). Functional expression of Kir 6.2 and Kir 6.1 can complement growth deficiency weakly and strongly respectively of the yeast strain on low-potassium medium. Mutations of Kir 6.2 that abolish ATP sensitivity (K185Q, I182Q) and enhance trafficking to the plasma membrane surface (Kir 6.2ΔC36) lead to significantly better growth rescue. Growth rescue of Kir 6.1, Kir 6.2 and the above mutants can be inhibited by pharmacological agents (cesium ions, phentolamine and quinine) known to decrease channel activity by direct interaction with the pore forming subunit. Thus we have developed a system in yeast that can report both loss and gain of function mutations in these subunits and pharmacological interventions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.