Abstract

Cultured human choriocarcinoma (BeWo) cells have previously been shown to exhibit, in comparison with other cultured cell types, elevated nitrobenzylthioinosine (NBMPR)-sensitive transport activity and large numbers (> 10(7)/cell) of high-affinity NBMPR-binding sites [Boumah, Hogue and Cass (1992) Biochem. J. 288, 987-996]. The present study investigates whether NBMPR-sensitive nucleoside transport activity could be induced in Xenopus laevis oocytes by microinjection of poly(A)+ RNA isolated from proliferating cultures of BeWo cells. Expression of uridine transport activity was assayed by comparing rates of uptake (22 degrees C) of 100 microM [3H]uridine by RNA-injected oocytes with uptake by water-injected or uninjected oocytes. A 4-fold stimulation of uridine uptake (2.0 versus 0.5 pmol/90 min per oocyte) was seen when oocytes were injected with 50 ng of BeWo poly(A)+ RNA, and this stimulation was abolished when the RNA-injected oocytes were assayed in the presence of 10 microM NBMPR. The expressed uridine transport activity in oocytes was highly sensitive to NBMPR, with a 50% reduction seen at 1.1 nM NBMPR (IC50 value). The IC50 value for NBMPR inhibition of uptake of 100 microM [3H]uridine by intact BeWo cells was 1.4 nM. Inward fluxes of [3H]uridine in the RNA-injected oocytes were greatly reduced in the presence of high concentrations (2 mM) of non-radioactive nucleosides (adenosine, thymidine, inosine) that are known permeants of NBMPR-sensitive nucleoside transport processes. These results establish that the abundance of NBMPR-sensitive nucleoside transporter mRNA in poly(A)+ RNA preparations from BeWo cells is sufficient to achieve production of functionally active transporter protein in Xenopus oocytes and that, when expressed in Xenopus oocytes, the transporters exhibit NBMPR sensitivity and permeant selectively similar to that of the native transporters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.