Abstract

Site-specific recombinases revolutionized "in vivo" genetic engineering because they can catalyze precise excisions, integrations, inversions, or translocations of DNA between their distinct recognition target sites. We have constructed a synthetic gene encoding Cre recombinase with the GC content 67.7% optimized for expression in high-GC bacteria and demonstrated this gene to be functional in Streptomyces lividans. Using the synthetic cre(a) gene, we have removed an apramycin resistance gene flanked by loxP sites from the chromosome of S. lividans with 100% efficiency. Sequencing of the chromosomal DNA part showed that excision of the apramycin cassette by Cre recombinase was specific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call