Abstract

Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis and sepsis. A key feature in pathogenicity is the capsular polysaccharide (CPS) that prevents complement activation and thus supports bacterial survival in the host. Twelve serogroups characterized by immunologically and structurally different CPSs have been identified. Meningococcal CPSs elicit bactericidal antibodies and consequently are used for the development of vaccines. Vaccination against the epidemiologically most relevant serogroups was initially carried out with purified CPS and later followed by conjugate vaccines which consist of CPS covalently linked to a carrier protein. Of increasing importance in the African meningitis belt is NmX for which no vaccine is currently available. Here, we describe the molecular cloning, recombinant expression and purification of the capsule polymerase (CP) of NmX called CsxA. The protein expressed with N- and/or C-terminal epitope tags was soluble and could be purified to near homogeneity. With short oligosaccharide primers derived from the NmX capsular polysaccharide (CPSX), recombinant CsxA produced long polymer chains in vitro that in immunoblots were detected with NmX-specific antibodies. Moreover, the chemical identity of in vitro produced NmX polysaccharides was confirmed by NMR. Besides the demonstration that the previously identified gene csxA encodes the NmX CP CsxA, the data presented in this study pave the way for the use of the recombinant CP as a safe and economic way to generate the CPSX in vaccine developmental programs.

Highlights

  • Functional expression of the capsule polymerase of Neisseria meningitidis serogroup X: A new perspective for vaccine development. [1].

Read more

Summary

Introduction

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.