Abstract

The genes for the alkane-inducible monooxygenase system of the yeast Candida tropicalis, namely a cytochrome P450alk (P450alk) and a NADPH cytochrome P450 oxidoreductase (NCPR) gene, were transferred in Saccharomyces cerevisiae. The P450alk gene was expressed in this host with the help of the yeast alcohol dehydrogenase I (ADHI) promoter and terminator, whereas the NCPR gene could be expressed with its own structural elements. The presence of P450alk in S. cerevisiae microsomal fractions resulted in a new acquired lauric acid terminal hydroxylation activity. Moreover, the same activity, coupled with the appearance of 12-hydroxylauric acid derivatives, could be obtained by the addition of lauric acid to intact cells expressing P450alk. The coordinate expression of the P450alk and NCPR genes in S. cerevisiae elevated the turnover rate of the P450alk monooxygenase activity about 2-fold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call