Abstract

ABSTRACTBrazzein is an attractive sweetener candidate because of its sugar-like taste, high sweetness, and good stability at high temperature and wide pH range. This study was aimed to express and purify bioactive recombinant brazzein (rBrazzein). The rBrazzein gene was synthesized according to the preferred codons of Bacillus subtilis and successfully expressed in Escherichia coli and Bacillus licheniformis. In E. coli host, lower induction temperature of 30°C increased soluble rBrazzein (Ebrazzein) at high level. In B. licheniformis host, two signal peptides (Sec type and Tat type) were evaluated for the expression of rBarzzein in B. subtilis and B. licheniformis. However, only the Sec-type signal peptide guided the secretion expression of rBrazzein in B. licheniformis. The rBrazzein was expressed steadily and the highest yield reached about 57 mg/L at 36 h by small-scale fermentation. The purification procedure of rBrazzein by B. licheniformis (Bbrazzein) was thus established. Approximately 5 mg/L purified rBrazzein was obtained and the purity was 85%. The conformational state of rBrazzeins was confirmed by circular dichroism. The bioactivities of rBrazzeins were evaluated by sweet taste testing. The Bbrazzein and Ebrazzein were 266 times and 400 times sweeter than sucrose on a weight basis, respectively. The formation of disulfide bonds were both confirmed by LC/MS/MS and MALDI-TOF. The CD analysis indicated that Ebrazzein has a similar secondary structure with natural brazzein, which explained why Ebrazzein had a higher intensity of sweetness. This study demonstrated that B. licheniformis system is useful to produce active recombinant brazzein, and has potential food industry applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call