Abstract

Odorant receptors of zebrafish and C elegans were functionally expressed in vertebrate kidney cells (HEK293) using the eucaryotic expression vector pSMyc. Receptor-encoding cDNA cloned into this vector was expressed as a fusion protein with the N-terminal membrane import sequence of the guinea-pig serotonin receptor followed by a myc tag. Immunocytochemical evidence indicates that this strategy directs a protein with the predicted immunoreactivity and approximate molecular weight to the plasma membrane. Fish food extract (TetraMin) evoked a transient increase in intracellular [Ca2+] in HEK293 cells transiently transfected with plasmids containing cDNA for three fish odorant receptors and converted to stable cell lines. The effect of the extract was concentration dependent and limited to the fraction of the extract < 5 kDa. Pretreating the transfected cells with the PLC inhibitor U73122 reduced the odor-evoked signal. Fish food extract also evoked a transient increase in intracellular [Ca2+] in HEK293 cells transiently transfected with plasmids containing cDNA for single fish odorant receptors. Diacetyl evoked a transient increase in intracellular [Ca2+] in HEK293 cells transiently transfected with plasmids encoding the cDNA of ODR10, an odorant receptor of C. elegans suggested in other work to be specific for diacetyl. These results strongly imply that odorant receptors can be functionally expressed in HEK293 cells using this novel expression protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.