Abstract

An intestinal active transport system specific to small peptides and peptide-like drugs such as β-lactam antiobiotics was functionally expressed in Xenopus laevis oocytes after microinjection of messenger RNA (mRNA) derived from rat intestinal cells. The transport activity was evaluated by measuring the uptake of a tripeptide-like cephalosporin antibiotic, ceftibuten, which has high affinity for the intestinal peptide/H + co-transporter and is resittant to peptidases. Ceftibuten transport in mRNA-injected oocytes was pH dependent (a proton gradient is the driving force), stereo selective (uptake of the cis-isomer of ceftibuten was about 4-fold higher than that of the trans-isomer), saturable and temperature dependent. Furthermore, various dipeptides showed cis-inhibitory and trans-stimulatory effects on the uptake of ceftibuten by mRNA-injected oocytes, suggesting that ceftibuten and dipeptides are transported by a common carrier protein. These results are in accordance with the functional properties of native proton-coupled peptide transporter previously clarified by studies with isolated intestinal brush-border membrane vesicles and other experimental systems. A protein with a molecular mass of about 130 kDa expressed in the membrane of mRNA-injected oocytes was identified as the transport protein by specific labeling with a photoreactive β-lactam antibiotic, [ 3h]benxylpenicillin, followed by SDS-PAGE analysis of the radiolabeled protein. Furthermore, an experiment with mRNA size-fractionated by sucrose density gradient centrifugation indicated that the peptide transporter is encoded by mRNA of between 1.8 and 3.6 kb. These results, obtained using a heterologous gene expression technique, confirm that intestinal absorption of β-lactam antibiotics occurs through a carrier-mediated mechanism and show that biologically stable β-lactam antibiotics can be useful probes for molecular analysis of intestinal peptide transporter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.