Abstract

The expression of the bovine growth hormone (bGH) gene was examined in Pleurotus eryngii, which belongs to the family of oyster mushrooms. The region encoding mature bGH, which has a variety of regulatory effects on growth and metabolic processes, was amplified using designed primers containing initiation and termination codons and then subcloned into pPEV binary expression vector. The recombinant vector (pPEVbGH) was introduced in P. eryngii via Agrobacterium tumefaciens-mediated transformation. Recombinant bGH was expressed in P. eryngii harboring pPEVbGH vector under control of the cauliflower mosaic virus (CaMV) 35S promoter up to a level of approximately 26% of total cell proteins after 6 days of cultivation, after which the recombinant protein was analyzed by SDS-PAGE and Western blotting. Interestingly, the growth rate of P. eryngii mycelia harboring pPEVbGH vector was approximately three times faster than that of control P. eryngii, suggesting that bGH affected the growth of P. eryngii. Biological activities were examined in Sprague-Dawley rats, which were administered regular feed mixed with mycelial extracts containing bGH (0.1 or 0.2 μg of bGH per g of animal feed). Mycelial extracts containing bGH significantly affected growth rates and lipid profiles; total cholesterol, triglyceride, HDL, and LDL levels were improved in rats fed mycelial extracts compared with those administered regular feed containing nontransgenic P. eryngii. This result indicates that P. eryngii harboring pPEVbGH vector could produce biologically active bGH. Further, levels of all growth-related factors increased, resulting in faster growth rates in bGH-treated groups. Accordingly, these data suggest that P. eryngii can be applied to the production of industrially useful proteins using a plant expression vector as an efficient mushroom host system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.