Abstract

The antitumor drug doxorubicin is widely used in clinical practice. However, the low yield and high cost of this drug highlight the urgent need for cost-effective processes to rapidly manufacture antitumor drugs at scale. In the biosynthesis pathway, the multi-functional cytochrome P450 enzyme DoxA catalyzes the last three steps of hydroxylation. The final conversion of daunorubicin to doxorubicin is the rate-limiting step. In our work, the DoxA has been expressed with the ferredoxin reductase FDR2 and the ferredoxin FDX1 and purified to homogeneous. The reduced carbon monoxide difference spectroscopy, heme concentration, and enzymatic characteristic were characterized. These studies suggest an approach for engineering Streptomyces P450s with functional expression for mechanistic and structural studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.