Abstract

The biosynthetic pathway for staphyloxanthin, a C(30) carotenoid biosynthesized by Staphylococcus aureus, has previously been proposed to consist of five enzymes (CrtO, CrtP, CrtQ, CrtM, and CrtN). Here, we report a missing sixth enzyme, 4,4'-diaponeurosporen-aldehyde dehydrogenase (AldH), in the staphyloxanthin biosynthetic pathway and describe the functional expression of the complete staphyloxanthin biosynthetic pathway in Escherichia coli. When we expressed the five known pathway enzymes through artificial synthetic operons and the wild-type operon (crtOPQMN) in E. coli, carotenoid aldehyde intermediates such as 4,4'-diaponeurosporen-4-al accumulated without being converted into staphyloxanthin or other intermediates. We identified an aldH gene located 670 kilobase pairs from the known staphyloxanthin gene cluster in the S. aureus genome and an aldH gene in the non-staphyloxanthin-producing Staphylococcus carnosus genome. These two putative enzymes catalyzed the missing oxidation reaction to convert 4,4'-diaponeurosporen-4-al into 4,4'-diaponeurosporenoic acid in E. coli. Deletion of the aldH gene in S. aureus abolished staphyloxanthin biosynthesis and caused accumulation of 4,4'-diaponeurosporen-4-al, confirming the role of AldH in staphyloxanthin biosynthesis. When the complete staphyloxanthin biosynthetic pathway was expressed using an artificial synthetic operon in E. coli, staphyloxanthin-like compounds, which contained altered fatty acid acyl chains, and novel carotenoid compounds were produced, indicating functional expression and coordination of the six staphyloxanthin pathway enzymes.

Highlights

  • The biosynthetic pathway for staphyloxanthin has previously been proposed to consist of five enzymes

  • This indicates that wild-type S. carnosus expresses a carotenoid aldehyde dehydrogenase (AldH), similar to the AldH expressed in S. aureus, that can catalyze the oxidation of carotenoid aldehyde (4,4Ј-diaponeurosporen-4-al) to a carboxylic acid intermediate (4,4Ј-diaponeurosporenoic acid)

  • The biosynthesis of staphyloxanthin had been exclusively studied in S. aureus and S. carnosus

Read more

Summary

Background

The biosynthetic pathway for staphyloxanthin has previously been proposed to consist of five enzymes. The biosynthetic pathway for staphyloxanthin, a C30 carotenoid biosynthesized by Staphylococcus aureus, has previously been proposed to consist of five enzymes (CrtO, CrtP, CrtQ, CrtM, and CrtN). We report a missing sixth enzyme, 4,4؅diaponeurosporen-aldehyde dehydrogenase (AldH), in the staphyloxanthin biosynthetic pathway and describe the functional expression of the complete staphyloxanthin biosynthetic pathway in Escherichia coli. When we expressed the five known pathway enzymes through artificial synthetic operons and the wild-type operon (crtOPQMN) in E. coli, carotenoid aldehyde intermediates such as 4,4؅-diaponeurosporen-4-al accumulated without being converted into staphyloxanthin or other intermediates. We identified an aldH gene located 670 kilobase pairs from the known staphyloxanthin gene cluster in the S. aureus genome and an aldH gene in the non-staphyloxanthin-producing Staphylococcus carnosus genome These two putative enzymes catalyzed the missing oxidation reaction to convert 4,4؅-diaponeurosporen-4-al into 4,4؅-diaponeurosporenoic acid in E. coli. Compounds and novel carotenoids were successfully produced in Escherichia coli for the first time

EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.