Abstract

Exposure to microgravity induces autonomic and vestibular disorders such as alterations in cardiovascular function. The paraventricular nucleus of the hypothalamus (PVN) is known to be an important center for integrating autonomic and cardiovascular responses as blood volume reflexes. The acute effects promoted by microgravity and PVN involvement in cardiovascular and autonomic parameters have not yet been evaluated. Male Wistar rats were anesthetized to facilitate cannulae implantation in the PVN. After 3 days of surgical recovery, femoral artery and vein catheters were implanted for direct recording of blood pressure and heart rate (HR) in conscious animals to evaluate cardiovascular and autonomic changes in an acute protocol of head-down tilt (HDT) in nonanesthetized rats. During HDT, there was an increase in mean arterial pressure (11 ± 1 mmHg, P < 0.05) and a decrease in HR (-28 ± 5 bpm, P < 0.05). Spectral analysis of systolic arterial pressure showed an increase in the low-frequency (LF) component. In addition, HDT induced a reduction in the LF component and an increase in the high-frequency (HF) component of the pulse interval (PI). PVN inhibition with muscimol reversed bradycardia and blocked the reduction of the LF and HF increases in PI during HDT. These results suggest that the PVN participates in the cardiovascular compensation during HDT, especially modulating cardiac responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.