Abstract
DC-SIGN, a type II membrane-spanning C-type lectin that is expressed on the surface of dendritic cells (DC), captures and promotes human and simian immunodeficiency virus (HIV and SIV) infection of CD4(+) T cells in trans. To better understand the mechanism of DC-SIGN-mediated virus transmission, we generated and functionally evaluated a panel of seven monoclonal antibodies (MAbs) against DC-SIGN family molecules. Six of the MAbs reacted with myeloid-lineage DC, whereas one MAb preferentially bound DC-SIGNR/L-SIGN, a homolog of DC-SIGN. Characterization of hematopoietic cells also revealed that stimulation of monocytes with interleukin-4 (IL-4) or IL-13 was sufficient to induce expression of DC-SIGN. All DC-SIGN-reactive MAbs competed with intercellular adhesion molecule 3 (ICAM-3) for adhesion to DC-SIGN and blocked HIV-1 transmission to T cells that was mediated by THP-1 cells expressing DC-SIGN. Similar but less efficient MAb blocking of DC-mediated HIV-1 transmission was observed, indicating that HIV-1 transmission to target cells via DC may not be dependent solely on DC-SIGN. Attempts to neutralize DC-SIGN capture and transmission of HIV-1 with soluble ICAM-3 prophylaxis were limited in success, with a maximal inhibition of 60%. In addition, disrupting DC-SIGN/ICAM-3 interactions between cells with MAbs did not impair DC-SIGN-mediated HIV-1 transmission. Finally, forced expression of ICAM-3 on target cells did not increase their susceptibility to HIV-1 transmission mediated by DC-SIGN. While these findings do not discount the role of intercellular contact in facilitating HIV-1 transmission, our in vitro data indicate that DC-SIGN interactions with ICAM-3 do not promote DC-SIGN-mediated virus transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.