Abstract

Early neuroimaging and electrophysiological studies suggested that motor imagery recruited a different network than motor execution. However, several studies have provided evidence for the involvement of the same circuits in motor imagery tasks, in the absence of overt responses. The present study aimed to test whether imagined performance of a stop-signal task produces a similar pattern of motor-related EEG activity than that observed during real performance. To this end, mu and beta event-related desynchronization (ERD) and the Lateralized Readiness Potential (LRP) were analyzed. The study also aimed to clarify the functional significance of the Stop-N2 and Stop-P3 event-related potential (ERPs) components, which were also obtained during both real and imagined performance. The results showed a common pattern of brain electrical activity, and with a similar time course, during covert performance and overt execution of the stop-signal task: presence of LRP and Stop-P3 in the imagined condition and identical LRP onset, and similar mu and beta ERD temporal windows for both conditions. These findings suggest that a similar inhibitory network may be activated during both overt and covert execution of the task. Therefore, motor imagery may be useful to improve inhibitory skills and to develop new communicating systems for Brain-Computer Interface (BCI) devices based on inhibitory signals.

Highlights

  • During the last decades, Brain-Computer Interface (BCI) communicating systems are being developed successfully for a variety of clinical (Mak and Wolpaw, 2009) and non-clinical (Blankertz et al, 2012) applications

  • The main goal of the present study was to determine whether a similar pattern of motor-related brain electrical activity is shared in the overt and covert performance of the stop-signal task, a paradigm that exerts strong executive control

  • The results of the present study indicate that covert performance of the stop-signal task appears to recruit neural mechanisms in the brain similar to those used during overt execution and with a similar time course

Read more

Summary

Introduction

Brain-Computer Interface (BCI) communicating systems are being developed successfully for a variety of clinical (Mak and Wolpaw, 2009) and non-clinical (Blankertz et al, 2012) applications. These systems are based mostly on the assumption that the mental rehearsal of an action recruits the same neural mechanisms as its real performance. The simulation theory, known as the functional equivalence hypothesis (Jeannerod, 2001), suggests that a similar cortical network, including primary areas, is involved during both mental practice of a movement and its overt execution. Since Penfield and colleagues reported that stimulation of specific neurons in the primary motor cortex (M1) resulted in movements following a somatotopic representation (Penfield and Boldrey, 1937; Penfield and Rasmussen, 1950), it has been generally assumed that M1 plays the role of a pure executor receiving orders from superior motor centers.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.