Abstract
We introduce a new method to compute explicit formulae for various zeta functions associated to groups and rings. The specific form of these formulae enables us to deduce local functional equations. More precisely, we prove local functional equations for the subring zeta functions associated to rings, the subgroup, conjugacy and representation zeta functions of finitely generated, torsion-free nilpotent (or T -)groups, and the normal zeta functions of T -groups of class 2. In particular we solve the two problems posed in [9, Section 5]. We deduce our theorems from a ‘blueprint result’ on certain p-adic integrals which generalises work of Denef and others on Igusa’s local zeta function. The Malcev correspondence and a Kirillov-type theory developed by Howe are used to ‘linearise’ the problems of counting subgroups and representations in T -groups, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.