Abstract

Transition-metal oxide nanoparticles and molecular coordination compounds are highlighted as functional mimics of halogenating enzymes. These enzymes are involved in halometabolite biosynthesis. Their activity is based upon the formation of hypohalous acids from halides and hydrogen peroxide or oxygen, which form bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities in follow-up reactions. Therefore, enzyme mimics and halogenating enzymes may be valuable tools to combat biofilm formation. Here, halogenating enzyme models are briefly described, enzyme mimics are classified according to their catalytic functions, and current knowledge about the settlement chemistry and adhesion of fouling organisms is summarized. Enzyme mimics with the highest potential are showcased. They may find application in antifouling coatings, indoor and outdoor paints, polymer membranes for water desalination, or in aquacultures, but also on surfaces for food packaging, door handles, hand rails, push buttons, keyboards, and other elements made of plastic where biofilms are present. The use of natural compounds, formed in situ with nontoxic and abundant metal oxide enzyme mimics, represents a novel and efficient "green" strategy to emulate and utilize a natural defense system for preventing bacterial colonization and biofilm growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.