Abstract

AbstractOne of the most exciting recent advances in the neuroprosthetics field has been the application of biosignals in the design of functional electrical stimulation (FES) devices. An Electromyogram (EMG) measures the electrical activity in muscles and is often considered as ideal candidate biosignal for designing closed-loop controlled FES system. In this brief communication, we propose a novel design paradigm of a synergistic benefit of incorporating two different design principles in development of an EMG controlled FES system that hold promise for the future of rehabilitation of stroke and other neurological disorders. The proposed system will detect the residual EMG signals from the muscle and suitably adjust the stimulation current amplitude and stimulate the paralyzed muscles with a 'natural' EMG pattern envelope. We offer this design as a fruitful area for fuing recent advances in the neuroprosthetics field has been the application of biosignals in the design of functional electrical stimulation (FES) devices. An Electromyogram (EMG) measures the electrical activity in muscles and is often considered as ideal candidate biosignal for designing closed-loop controlled FES system. In this brief communication, we propose a novel design paradigm of a synergistic benefit of incorporating two different design principles in development of an EMG controlled FES system that hold promise for the future of rehabilitation of stroke and other neurological disorders. The proposed system will detect the residual EMG signals from the muscle and suitably adjust the stimulation current amplitude and stimulate the paralyzed muscles with a 'natural' EMG pattern envelope. We offer this design as a fruitful area for future research and clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call