Abstract
Neuregulins comprise a large family of growth factors containing an epidermal growth factor (EGF) domain. NRG1 acts in signaling pathways involved in proliferation, apoptosis, migration, differentiation, and adhesion of many normal cell types and in human diseases. The EGF domain of NRG1 mediates signaling by interaction with members of the ErbB family of receptors. Easy access to correctly folded hNRG1α EGF domain can be a valuable tool to investigate its function in different cell types. The EGF domain of hNRG1α was produced in Escherichia coli in fusion with TrxA and purified after cleavage of TrxA. Conformation and stability analyses were performed by using biophysical methods and the disulfide bonds were mapped by mass spectrometry. The activity of the hNRG1α EGF domain was demonstrated in cell proliferation and migration assays. Approximately 3.3mg of hNRG1α EGF domain were obtained starting from a 0.5L of E. coli culture. Correct formation of the three disulfide bonds was demonstrated by mass spectrometry with high accuracy. Heat denaturation assays monitored by circular dichroism and dynamic light scattering revealed that it is a highly stable protein. The recombinant EGF domain of hNRG1α purified in this work is highly active, inducing cell proliferation at concentration as low as 0.05 ng/mL. It induces also cell migration as demonstrated by a gap closure assay. The EGF domain of hNRG1α was produced in E. coli with the correct disulfide bonds and presented high stimulation of HeLa cell proliferation and NDFH cell migration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.