Abstract

Chemically skinned human skeletal muscle fibers were used to study the effects of uridine triphosphate (UTP) on the tension-pCa relationship and on Ca2+ uptake and release by the sarcoplasmic reticulum (SR). Total replacement (2.5 mM) of adenosine triphosphate (ATP) with UTP (i) displaced the tension-pCa relationship to the left along the abcissae and increased maximum Ca(2+)-activated tension, both effects being larger in slow- than in fast-type fibers; (ii) markedly reduced Ca2+ uptake by the SR (evaluated by the caffeine-evoked tension) in both fiber types; (iii) had no effect on the rate of depletion of caffeine-sensitive Ca2+ stores during soaking in relaxing solutions; (iv) induced tension in slow- but not in fast-type fibers. The effects on the SR functional properties are consistent with the notion that UTP is a poor substitute for ATP as a substrate for the Ca ATPase pump and as an agonist of the ryanodine-sensitive Ca(2+)-release channel. The UTP-induced tension in human slow-type fibers is attributed to effect(s) of the nucleotide on the tension-pCa relationship of the contractile machinery. The present data reveal important differences between the effects of UTP on human versus rat muscle fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.