Abstract

Synthetic cannabinoids are psychoactive substances designed to mimic the euphorigenic effects of the natural cannabis. Novel unregulated compounds appear once older compounds become illegal. It has been previously reported that synthetic cannabinoids are different than Δ9 -tetrahydrocannabinol (Δ9 -THC) as they have chemical structures unrelated to Δ9 -THC, different metabolism and, often, greater toxicity. This study aimed to investigate the effects of three novel synthetic cannabinoids and pure Δ9 -THC on body temperature, nociceptive threshold, anxiety, memory function, locomotor and exploratory parameters, and depression. We performed a battery of behavioural and motor tests starting 50minutes post i.p. injection of each drug to adult ICR mice. The synthetic cannabinoids that were used are AB-FUBINACA, AB-CHMINACA and PB-22. All synthetic cannabinoids and Δ9 -THC caused hypothermia, but only Δ9 -THC induced a clear antinociceptive effect. All synthetic cannabinoids and Δ9 -THC caused decreased anxiety levels, spatial memory deficits and decreased exploratory behaviour as measured in the elevated plus maze, Y-maze and staircase paradigm, respectively. However, all synthetic cannabinoids but not Δ9 -THC demonstrated decreased locomotor activity in the staircase test. Moreover, only AB-FUBINACA and Δ9 -THC affected the gait balance and grip strength of the mice as was assessed by the latency time to fall from a rod. In the forced swimming test, PB-22 caused elevated depression-like behaviour while AB-FUBINACA induced a reversed effect. These results suggest varied effects among different synthetic cannabinoids and Δ9 -THC. Further studies are needed to characterize the overall effects and differences between these synthetic cannabinoids and Δ9 -THC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.