Abstract

PGC-1 (peroxisome-proliferator-activated receptor-γ coactivator-1) alpha is a potent transcriptional coactivator that coordinates the activation of numerous metabolic processes. Exercise strongly induces PGC-1alpha expression in muscle, and overexpression of PGC-1alpha in skeletal muscle activates mitochondrial oxidative metabolism and neovascularization, leading to markedly increased endurance. In light of these findings, PGC-1alpha has been proposed to protect from age-associated sarcopenia, bone loss, and whole-body metabolic dysfunction, although these findings have been controversial. We therefore comprehensively evaluated muscle and whole-body function and metabolism in 24-month-old transgenic mice that over-express PGC-1alpha in skeletal muscle. We find that the powerful effects of PGC-1alpha on promoting muscle oxidative capacity and protection from muscle fatigability persist in aged animals, although at the expense of muscle strength. However, skeletal muscle PGC-1alpha does not prevent bone loss and in fact accentuates it, nor does it have long-term benefit on whole-body metabolic composition or insulin sensitivity. Protection from sarcopenia is seen in male animals with overexpression of PGC-1alpha in skeletal muscle but not in female animals. In summary, muscle-specific expression of PGC-1alpha into old age has beneficial effects on muscle fatigability and may protect from sarcopenia in males, but does not improve whole-body metabolism and appears to worsen age-related trabecular bone loss.

Highlights

  • Metabolic homeostasis requires a complex network of transcriptional programs

  • We aged to 24 months mice with transgenic expression of PGC-1alpha under control of the muscle-specific muscle creatine kinase (MCK) promoter (MCKa mice) [11], and compared them both to littermate controls and to analogous 4month-old groups

  • We first looked at mitochondrial biogenesis and genes of oxidative phosphorylation (OXPHOS), well known to be induced by PGC1alpha in skeletal muscle [11]

Read more

Summary

Introduction

Metabolic homeostasis requires a complex network of transcriptional programs. PGC-1 (peroxisome-proliferator-activated receptor-γ coactivator-1) alpha is a potent transcriptional coactivator that regulates a large number of nuclear-encoded genes [1,2,3], which, in turn, modulate numerous metabolic processes. In most cells and tissues, PGC-1alpha drives activation of mitochondrial biogenesis. PGC-1alpha promotes brown fat differentiation and thermogenesis [4], hepatic gluconeogenesis [5], cardiac homeostasis [6], and axonal integrity in the brain [7]. PGC-1alpha has been widely studied in skeletal muscle.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call