Abstract

By combining single-channel and whole-cell patch-clamp recordings, we have established the sensitivity to omega-agatoxin IVA and omega-conotoxin MVIIC (SNX-230) of G1, G2, and G3, the three novel non-L-, non-N-type Ca2+ channels characterized previously in rat cerebellar granule cells. G1 channels were blocked irreversibly by both omega-conotoxin MVIIC and low doses of omega-agatoxin IVA (saturation at 50 nM). Thus, according to pharmacological criteria, G1 channels must be classified as P-type Ca2+ channels. Being slowly inactivating during depolarizing pulses and completely inactivated at voltages in which steady-state inactivation of P-type channels in Purkinje cells is negligible, G1 represents a novel P subtype. Neither G2 nor G3 was blocked irreversibly by omega-conotoxin MVIIC, and therefore both are R-type Ca2+ channels. G2 and G3 have some biophysical properties similar to those of low-voltage-activated (LVA) Ca2+ channels (e.g., voltage range for steady-state inactivation, V 1/2 = -90 mV), some properties similar to those of high-voltage-activated (HVA) Ca2+ channels (e.g., high sensitivity to Cd2+ block), and other properties intermediate between those of LVA and HVA Ca2+ channels, with LVA properties prevailing in G2 and HVA properties prevailing in G3. The R-type whole-cell current was inhibited by Ni2+ with a biphasic dose-response curve (IC50: 4 and 153 microM), suggesting that G2 and G3 may have a different sensitivity to Ni2+ block. Our results uncover functional diversity of both native P-type and R-type Ca2+ channels and show that R subtypes with distinct biophysical properties are coexpressed in rat cerebellar granule cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.