Abstract

Copper is an important element in host-microbe interactions, acting both as a catalyst in enzymes and as a potential toxin. Cu(+)-ATPases drive cytoplasmic Cu(+) efflux and protect bacteria against metal overload. Many pathogenic and symbiotic bacteria contain multiple Cu(+)-ATPase genes within particular genetic environments, suggesting alternative roles for each resulting protein. This hypothesis was tested by characterizing five homologous Cu(+)-ATPases present in the symbiotic organism Sinorhizobium meliloti. Mutation of each gene led to different phenotypes and abnormal nodule development in the alfalfa host. Distinct responses were detected in free-living S. meliloti mutant strains exposed to metal and redox stresses. Differential gene expression was detected under Cu(+), oxygen or nitrosative stress. These observations suggest that CopA1a maintains the cytoplasmic Cu(+) quota and its expression is controlled by Cu(+) levels. CopA1b is also regulated by Cu(+) concentrations and is required during symbiosis for bacteroid maturation. CopA2-like proteins, FixI1 and FixI2, are necessary for the assembly of two different cytochrome c oxidases at different stages of bacterial life. CopA3 is a phylogenetically distinct Cu(+)-ATPase that does not contribute to Cu(+) tolerance. It is regulated by redox stress and required during symbiosis. We postulated a model where non-redundant homologous Cu(+)-ATPases, operating under distinct regulation, transport Cu(+) to different target proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.