Abstract

SynopsisThe evolution of novel functional traits can contribute substantially to the diversification of lineages. Older functional traits might show greater variation than more recently evolved novelties, due to the accrual of evolutionary changes through time. However, functional complexity and many-to-one mapping of structure to function could complicate such expectations. In this context, we compared kinematics and performance across juveniles from multiple species for two styles of waterfall-climbing that are novel to gobiid fishes: ancestral “powerburst” climbing, and more recently evolved “inching”, which has been confirmed only among species of a single genus that is nested within the clade of powerburst climbers. Similar net climbing speeds across inching species seem, at first, to indicate that this more recently evolved mode of climbing exhibits less functional diversity. However, these similar net speeds arise through different pathways: Sicyopterus stimpsoni from Hawai’i move more slowly than S. lagocephalus from La Réunion, but may also spend more time moving. The production of similar performance between multiple functional pathways reflects a situation that resembles the phenomenon of many-to-one mapping of structure to function. Such similarity has the potential to mask appropriate interpretations of relative functional diversity between lineages, unless the mechanisms underlying performance are explored. More specifically, similarity in net performance between “powerburst” and “inching” styles indicates that selection on climbing performance was likely a limited factor in promoting the evolution of inching as a new mode of climbing. In this context, other processes (e.g., exaptation) might be implicated in the origin of this functional novelty.

Highlights

  • HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not

  • The documents may come from teaching and research institutions in France or abroad, or from public or private research centers

  • L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés

Read more

Summary

Introduction

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.