Abstract

The genus Salvia L. (Lamiaceae) comprises myriad distinct medicinal herbs, with terpenoids as one of their major active chemical groups. Abietane-type diterpenoids (ATDs), such as tanshinones and carnosic acids, are specific to Salvia and exhibit taxonomic chemical diversity among lineages. To elucidate how ATD chemical diversity evolved, we carried out large-scale metabolic and phylogenetic analyses of 71 Salvia species, combined with enzyme function, ancestral sequence and chemical trait reconstruction, and comparative genomics experiments. This integrated approach showed that the lineage-wide ATD diversities in Salvia were induced by differences in the oxidation of the terpenoid skeleton at C-20, which was caused by the functional divergence of the cytochrome P450 subfamily CYP76AK. These findings present a unique pattern of chemical diversity in plants that was shaped by the loss of enzyme activity and associated catalytic pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.