Abstract

The protein encoded by the TERMINAL FLOWER1 (TFL1) gene maintains indeterminacy in inflorescence meristem to repress flowering, and has undergone multiple duplications. However, basal angiosperms have one copy of a TFL1-like gene, which clusters with eudicot TFL1/CEN paralogs. Functional conservation has been reported in the paralogs CENTRORADIALIS (CEN) in eudicots, and ROOTS CURL IN NPA (RCNs) genes in monocots. In this study, long-term functional conservation and selective constraints were found between angiosperms, while the relaxation of selective constraints led to subfunctionalisation between paralogs. Long intron lengths of magnoliid TFL1-like gene contain more conserved motifs that potentially regulate TFL1/CEN/RCNs expression. These might be relevant to the functional flexibility of the non-duplicate TFL1-like gene in the basal angiosperms in comparison with the short, lower frequency intron lengths in eudicot and monocot TFL1/CEN/RCNs paralogs. The functionally conserved duplicates of eudicots and monocots evolved according to the duplication-degeneration-complementation model, avoiding redundancy by relaxation of selective constraints on exon 1 and exon 4. These data suggest that strong purifying selection has maintained the relevant functions of TFL1/CEN/RCNs paralogs on flowering regulation throughout the evolution of angiosperms, and the shorter introns with radical amino acid changes are important for the retention of paralogous duplicates.

Highlights

  • TERMINAL FLOWER1 (TFL1) is a member of the phosphatidylethanolamine-binding protein (PEBP) family

  • These functionally conserved paralogous gene duplicates may be subject to strong purifying selection pressures that constrain redundant functions, such as the floral-regulatory paralogs SEPALLATA 1 (SEP1) and SEPALLATA 2 (SEP2), and SHATTERPROOF 1 (SHP1) and SHATTERPROOF 2 (SHP2)[38]

  • One copy for each Magnoliid species was obtained after amplification, and this result is consistent with only one TFL1/CEN/ RCNs member in EST-library of basal angiosperm database

Read more

Summary

Introduction

TERMINAL FLOWER1 (TFL1) is a member of the phosphatidylethanolamine-binding protein (PEBP) family. Different expression patterns of duplicated TFL1/CEN/RCNs genes in Arabidopsis[16], apple[17], tomato[18,19], and tobacco[20] tissues have been reported Such differential expression was suggested as complementary functions (subfunctionalisation)[21,22]. There have been limited studies focussed on the effects of selective pressures on TFL1/CEN/RCNs paralog duplication, as well as the TFL1-like gene in basal angiosperms. These functionally conserved paralogous gene duplicates may be subject to strong purifying selection pressures that constrain redundant functions, such as the floral-regulatory paralogs SEPALLATA 1 (SEP1) and SEPALLATA 2 (SEP2), and SHATTERPROOF 1 (SHP1) and SHATTERPROOF 2 (SHP2)[38]. Selective constraints may be important in functionally redundant paralogous genes for buffering an organism’s phenotype against deleterious mutations[39]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.